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The transport behavior of environmentally signifi cant reactive 
solutes such as P and heavy metals is controlled in large part 

by the sorption behavior of these solutes to soil surfaces. Sorption 
behavior to soils is often determined by measuring sorption iso-
therms, where a known mass of soil is equilibrated with a solution 
of known concentration of the solute of interest. After equilibration, 
the concentration remaining in solution is measured and used to 
calculate the concentration sorbed to the soil (Nair et al., 1984). A 
sorption model is fi t to the data to obtain sorption parameters for 
the soil. These sorption parameters are used to estimate parameters 
such as the sorption capacity of the soil or retardation coeffi cients to 
be used in transport modeling. The accuracy of the model param-
eters will depend on whether the appropriate conceptual model was 
chosen, whether the experimental conditions were representative of 
environmental conditions, and whether an appropriate parameter 
estimation method was used.

A commonly used model for describing sorption behavior is 
the Langmuir model (Altin et al., 1998; Kumar and Sivanesan, 
2005; Kleinman and Sharpley, 2002; Tsai and Juang, 2000; 
Wang and Harrell, 2005). Because the Langmuir model is non-

linear, fi tting this model to measured data requires a “trial and 
error” approach. That is, values of the parameters are inserted 
into the model, the sorbed concentrations are calculated with 
the model, the model-calculated values are then compared with 
the observed data, the model parameters are adjusted, and the 
process is repeated until the best agreement between modeled 
and observed data is achieved. Alternatively, a linearized version 
of the Langmuir equation—at least four different versions exist 
(Table 1)—can be used so that the model parameters can be 
obtained directly by solving the normal equations (i.e., by linear 
regression). Because linear regression is convenient, requires little 
understanding of the data-fi tting process, and is easily done in 
spreadsheets such as Microsoft Excel, this method is commonly 
used for obtaining Langmuir sorption parameters (Borling et 
al., 2001; D’Angelo et al., 2003; Fang et al., 2002; Kleinman 
and Sharpley, 2002; Sharpley, 1995; Siddique and Robinson, 
2003; Xu et al., 2006; Zhang et al., 2005). A limitation to this 
approach, however, is that the transformation of data required 
for linearization can result in modifi cations of error struc-
ture, introduction of error into the independent variable, and 
alteration of the weight placed on each data point (Dowd and 
Riggs, 1965; Harter, 1984), often leading to differences in fi t-
ted parameter values between linear and nonlinear versions of 
the Langmuir model (Altin et al., 1998; Kumar and Sivanesan, 
2005; Schulthess and Dey, 1996; Tsai and Juang, 2000).

Although it is commonly assumed that linearized versions of 
the Langmuir model provide poorer fi ts and less accurate param-
eter estimates than the nonlinear equation (Harrison and Katti, 
1990; Kumar and Sivanesan, 2005; Kinniburgh, 1986), the most 
accurate Langmuir equation will depend on the error structure 
of the data because a major assumption in regression analyses is 
that the variance of the errors remains constant. Therefore, if a 
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One of the most commonly used models for describing solute sorption to soils is the 
Langmuir model. Because the Langmuir model is nonlinear, fi tting the model to sorption 
data requires that the model be solved iteratively using an optimization program. To avoid 
the use of optimization programs, a linearized version of the Langmuir model is often used 
so that model parameters can be obtained by linear regression. Although the linear and 
nonlinear Langmuir equations are mathematically equivalent, there are several limitations 
to using linearized Langmuir equations. We examined the limitations of using linearized 
Langmuir equations by fi tting P sorption data collected on eight different soils with four 
linearized versions of the Langmuir equation and comparing goodness-of-fi t measures and 
fi tted parameter values with those obtained with the nonlinear Langmuir equation. We then 
fi t the sorption data with two modifi ed versions of the Langmuir model and assessed whether 
the fi ts were statistically superior to the original Langmuir equation. Our results demonstrate 
that the use of linearized Langmuir equations needlessly limits the ability to model sorption 
data with good accuracy. To encourage the testing of additional nonlinear sorption models, 
we have made available an easily used Microsoft Excel spreadsheet (ars.usda.gov/msa/awmru/
bolster/Sorption_spreadsheets) capable of generating best-fi t parameters and their standard 
errors and confi dence intervals, correlations between fi tted parameters, and goodness-of-fi t 
measures. The results of our study should promote more critical evaluation of model fi ts to 
sorption data and encourage the testing of more sophisticated sorption models.

On the Use of Linearized Langmuir Equations
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transformation improves the constancy of 
the error variance, then the associated linear 
equation will provide better fi ts and more 
accurate parameter estimates than the non-
linear equation (Colquhoun, 1969). For 
example, while the nonlinear equation has 
been shown to provide the most accurate 
parameter estimates when the error variance 
remains constant (Atkins and Nimmo, 1975; 
Colquhoun, 1971; Gerringa et al., 1995; 
Persoff and Thomas, 1988), linearized ver-
sions of the Langmuir equation have been 
shown to provide slightly better parameter 
estimates than the nonlinear equation when 
the error variance increases linearly with the 
dependent variable (Atkins and Nimmo, 
1975; Colquhoun, 1971).

An important limitation to these earlier 
studies, however, is that they have been con-
ducted primarily on simulated data sets under 
conditions not necessarily representative of 
sorption studies. Even in studies that do compare fi tted parameter 
values between linear and nonlinear Langmuir equations on mea-
sured sorption data, parameter uncertainties are rarely included so 
it is unknown whether the differences in fi tted parameters between 
the different equations are statistically signifi cant (Allen et al., 2004; 
Altin et al., 1998; Kumar and Sivanesan, 2005; Kinniburgh, 1986; 
Schulthess and Dey, 1996; Tsai and Juang, 2000). Therefore, the 
accuracy of the linearized Langmuir equations is still unclear. This 
is of particular importance in P sorption studies where linearized 
Langmuir equations are commonly used for obtaining soil sorption 
parameters (Borling et al., 2001; D’Angelo et al., 2003; Fang et al., 
2002; Kleinman and Sharpley, 2002; Sharpley, 1995; Siddique and 
Robinson, 2003; Xu et al., 2006; Zhang et al., 2005).

While statistical differences between linear and nonlinear forms 
of the Langmuir model have been noted for some time (Colquhoun, 
1969, 1971; Dowd and Riggs, 1965; Kinniburgh, 1986; Kumar 
and Sivanesan, 2005; Schulthess and Dey, 1996), of greater concern 
is whether the Langmuir model itself is the most appropriate model 
for describing the data. Sorption data often do not conform to the 
standard Langmuir plot (Giles et al., 1974; Grant et al., 1998; Gu et 
al., 1994; Holford et al., 1974; Kinniburgh, 1986; Sposito, 1982), 
yet this may not be apparent when viewing linearized model fi ts to 
transformed data (Harter, 1984). Furthermore, the ease with which 
linearized Langmuir equations can be fi t to data may discourage 
critical evaluation of the model fi ts. This in turn can lead to accept-
ing the fi tted model parameters as representative of the soil when in 
fact the data do not conform to the Langmuir model at all. Instead, 
a modifi ed version of the Langmuir model may be more appropriate 
for describing the data (Grant et al., 1998; Hinz, 2001). Because lin-
earized versions of these modifi ed equations do not exist, the largest 
drawback to relying on linear regression may not be statistical differ-
ences between linear and nonlinear forms of the Langmuir model, 
but rather the inability to test more sophisticated nonlinear sorption 
models that cannot be linearized.

In this study, we set out to further our understanding of the 
limitations of using linearized Langmuir equations. Such under-
standing is particularly important in P sorption studies, where lin-
earized Langmuir equations are commonly used to obtain impor-

tant sorption parameters that are used in land management deci-
sions. To investigate the limitations of parameter estimation for 
isotherms, we fi t P sorption data collected on eight different soils 
with four linearized versions of the Langmuir equation and com-
pared goodness-of-fi t measures and fi tted parameter values with 
those obtained with the nonlinear Langmuir equation. We then 
fi t the sorption data with two modifi ed versions of the Langmuir 
model and assessed whether the fi ts were statistically superior to 
the original Langmuir equation. Our results demonstrate that the 
reliance on linearized Langmuir equations potentially limits the 
ability to model sorption data accurately. Therefore, to encourage 
the testing of more sophisticated nonlinear sorption models, we 
have made available an accurate and easy-to-use Microsoft Excel 
spreadsheet capable of performing nonlinear regression. Results of 
this study will allow researchers to make more informed decisions 
when applying the Langmuir model to their sorption data.

MATERIALS AND METHODS
Sorption Data

Sorption isotherms were conducted on surface soil samples (0–15 
cm) collected at seven locations in western Kentucky and one location 
in Alabama representing eight different soil series as follows: Belknap 
(coarse-silty, mixed, active, acid, mesic Fluvaquentic Endoaquepts), 
Collins (coarse-silty, mixed, active, acid, thermic Aquic Udifl uvents), 
Hartsells (fi ne-loamy, siliceous, subactive, thermic Typic Hapludults), 
Lakin (mixed, mesic Lamellic Udipsamments), Loring (fi ne-silty, mixed, 
active, thermic Oxyaquic Fragiudalfs), Melvin (fi ne-silty, mixed, active, 
nonacid, mesic Fluvaquentic Endoaquepts), Pembroke (fi ne-silty, mixed, 
active, mesic Mollic Paleudalfs), and Zanesville (fi ne-silty, mixed, active, 
mesic Oxyaquic Fragiudalfs). Soils were air dried and passed through a 
2-mm sieve before use. Soil samples (3 g) were equilibrated in 50-mL 
centrifuge tubes with 30 mL of a 0.01 mol L−1 CaCl2 solution contain-
ing either 5, 10, 15, 20, 30, or 40 mg L−1 P added as KH2PO4 (Nair 
et al., 1984). The soil mixture was placed on a reciprocating shaker and 
allowed to equilibrate for 24 h. Following equilibration, the mixture was 
centrifuged at 4000 rpm for 10 min and the liquid decanted and fi l-
tered through a Whatman 0.45-μm fi lter. Dissolved reactive P was mea-
sured colorimetrically (Murphy and Riley, 1962) using a QuickChem 
Autoanalyzer (Lachat Instruments, Chicago, IL).

Table 1. Different linearized forms of the Langmuir equation. The commonly used 
name is in parentheses.

Equation Equation form Limitations

Linearization I
(Hanes–Woolf)

max max

1C C
S S K S

= +
Because x (C) and y (C/S) are not independent, 
the correlation between x and y is overestimated, 
i.e., equation may provide good fi ts to data that 
do not conform to the Langmuir model.

Linearization II
(Lineweaver–
Burke)

max max

1 1 1 1
S S K C S

= +
Transformation leads to clumping of data points 
near origin—extremely sensitive to variability at 
low values of S (high values of 1/S).

Linearization III
(Eadie–Hofstee)

max
1 SS S
K C
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠

Abscissa is not error free; x (S/C) and y (S) data 
are not independent. In this case, correlation 
between x and y is underestimated, i.e., 
equation may provide poor fi t to data that do 
conform to the Langmuir model.

Linearization IV
(Scatchard)

max
S KS KS
C

= −
x (S) and y (S/C) are not independent. In this case, 
correlation between x and y is underestimated, 
i.e., equation may provide poor fi t to data that do 
conform to the Langmuir model. 
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Data Analysis
Originally developed for describing the adsorption of gases to a 

surface (Langmuir, 1918), the Langmuir model is used extensively for 
describing solute and metal sorption to soils:

max

1
S KCS
KC

=
+

 [1]

where S is the sorbed concentration (mg kg−1), Smax is the maximum 
sorption capacity of the soil (mg kg−1), K is the Langmuir binding-
strength coeffi cient (L mg−1), and C is the equilibrium concentra-
tion (mg L−1). Equation [1] was fi t to the sorption data and the fi t-
ted parameters and goodness-of-fi t measures were then compared with 
those obtained from fi tting the four linearized versions of Eq. [1] (Table 
1) to the data using linear regression.

Because in many cases sorption data do not conform to the standard 
Langmuir plot (Giles et al., 1974; Grant et al., 1998; Gu et al., 1994; 
Holford et al., 1974; Kinniburgh, 1986; Sposito, 1982), numerous modi-
fi cations of Eq. [1] exist (Grant et al., 1998; Hinz, 2001; Kinniburgh, 
1986; Limousin et al., 2007). In this study, we fi t two of these modi-
fi ed Langmuir models: the three-parameter Langmuir–Freundlich model 
and the four-parameter two-surface Langmuir model. The Langmuir–
Freundlich model, also known as the exponential Langmuir model, is 
a power function based on the assumption of continuously distributed 
affi nity coeffi cients (Sposito, 1980):

max

1
S KCS
KC

β

β=
+

 [2]

where β is a fi tting parameter (0 < β  < 1). The two-surface Langmuir 
model is based on the assumption that sorption occurs on two types of 
surfaces, each with different bonding energies (Holford et al., 1974):

1 2max 1 max 2

1 21 1
S K C S K C

S
K C K C

= +
+ +

 [3]

where the subscripts refer to the sorption capacity and distribution 
coeffi cient for the two different surfaces.

Best-fi t, or optimal, model parameters for the nonlinear equations 
were obtained by fi nding the combination of parameters that provide the 
best fi t to the observed data. Although numerous statistical packages exist 
that are capable of fi tting nonlinear equations, in this study we developed 
an easy-to-use Microsoft Excel spreadsheet capable of performing nonlinear 
weighted least squares regression. The spreadsheet generates best-fi t param-
eters, standard errors of the parameters, 95% confi dence intervals of the 
parameters, parameter correlations, and a goodness-of-fi t measure while 
requiring minimal effort by the user. The spreadsheet was used to fi t all 
nonlinear models to the data. The accuracy of the Excel spreadsheet was 
assessed by fi tting the three nonlinear equations to the sorption data using 
both the Excel spreadsheet and the more sophisticated statistical software 
package SAS (SAS Institute, 2003) and comparing parameter estimates, 
sums-of-squares, parameter uncertainties, and parameter correlations. The 
SAS PROC NLIN procedure with the Marquardt method was used. A 
brief description of the spreadsheet and the model-fi tting process follows.

Nonlinear Regression
Model parameters are generally estimated by minimizing an objec-

tive function. An objective function is a metric that measures the dif-
ference between observed and modeled data. Therefore, the goal of the 
nonlinear data-fi tting process is to fi nd the optimal set of parameter 
values that minimizes the objective function. The spreadsheet presented 
here uses the method of least squares regression for fi tting the nonlinear 

equations to the observed data. This method seeks to minimize the sum 
of the squared errors (SSE) between observed and calculated values of the 
dependent variable, in this case the sorbed concentration, S:

[ ]
2

1

SSE
N

i i i
i

w S S
=

= −∑  [4]

where SSE is the objective function to be minimized, N is the number of 
observations, wi is the ith weighting factor (see below), Si is the ith mea-
sured value of the dependent variable, and Si is the ith model-predicted 
value of the dependent variable.

By including wi in Eq. [4], the user has the option of using weighted 
least squares regression. If it is known that the data vary in accuracy, the data 
can be weighted so that the more accurate data exert a greater infl uence dur-
ing model calibration. A common approach is to set the weighting factor 
for each data point to be the inverse of the measured variance of the data (w 
= 1/σ2). If the variance of the data is unknown, other weighting schemes 
can be used. One approach is to use relative weighting (w = 1/S2). In this 
case, the uncertainty in the data is assumed to be proportional to the data 
themselves. The accuracy of the spreadsheet was tested against SAS using 
both weighted (w = 1/S2) and unweighted (w = 1) data.

Goodness-of-Fit Measure
Numerous methods exist for determining goodness of fi t (Kvalseth, 

1985); however, only one measure is calculated in the spreadsheet—the 
model effi ciency—because this statistic is considered by many to be the best 
overall indicator of model fi t (Kvalseth, 1985; Mayer and Butler, 1993). 
The model effi ciency, E (Nash and Sutcliffe, 1970), is calculated as

2

1

2
wavg

1

( )
1

( )

N

i i i
i
N

i i
i

w S S
E

w S S

=

=

−
= −

−

∑

∑

 [5]

where Swavg is the weighted mean of the measured values and all other vari-
ables are as defi ned above. A model effi ciency of 1 indicates a perfect fi t to 
the data, whereas a model effi ciency value of <0 indicates that taking the 
average of all the measured values would give a better prediction than the 
model. Some statistical packages such as SAS refer to the value calculated 
in Eq. [5] as r2; however, this is a misnomer because Eq. [5] can result in a 
negative number and the square of a real number can never be negative.

Parameter Uncertainties
In addition to goodness-of-fi t measures, parameter uncertainties 

are a useful metric when assessing the ability of a model to describe a 
data set. (Poor model fi ts tend to produce large parameter uncertainties, 
whereas good model fi ts tend to produce small parameter uncertain-
ties.) The uncertainty in the fi tted parameter values can be determined 
from the Jacobian matrix, J:

1 1 1

1 2

2 2 2

1 2

1 2

   

   

              

   

p

p

N N N

p

S S S
b b b
S S S
b b b

S S S
b b b

⎡ ⎤∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

J

 [6]
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where b is the best-fi t parameter value, p is the number of fi tting param-
eters, and all other variables are as defi ned above. The Jacobian matrix 
can be approximated by the perturbation method using fi nite differ-
ences (Becker and Yeh, 1972):

( ) ( )i i i ii

i i

S b b S bS
b b

+Δ −∂
≅

∂ Δ
 [7]

where Δb is the amount by which each parameter is perturbed (0.01b), 
S(b) are the predicted values using the best-fi t parameter values, and S(b + 
Δb) are the predicted values using the perturbed parameter values.

Assuming that the fi tted parameters represent the true global 
minimum of the objective function, the parameter uncertainties can be 
approximated from the covariance matrix. The covariance matrix, Cov, is 
calculated from the Jacobian matrix by (Draper and Smith, 1981):

1SSE
n p

−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

Cov A  [8]

where A is defi ned as

1 11 1 1

1 11

     

                                             

     

N N
i i i i

i i
i i p

N n
i i i i

i i
i ip p p

S S S Sw w
b b b b

S S S Sw w
b b b b

= =

= =

⎡ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ⎟⎜⎟⎢ ⎜ ⎟⎜⎟⎜ ⎟⎟⎢ ⎜⎜ ⎟⎟⎜ ⎟⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢
⎢
⎢= =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣

∑ ∑

∑ ∑

TA J J

⎤
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 [9]

To obtain A−1, we used the MINVERSE function in Excel.
The standard error (SE) of each parameter is given by the square 

root of the main diagonal of the covariance matrix (Eq. [8]). From the 
standard errors, the 95% confi dence intervals for the fi tted parameters (b) 
can be approximated by

min fit 0.05, SEN pb b t −= −  [10]

max fit 0.05, SEN pb b t −= +  [11]

where t0.05,N−p is the value of the t distribution for a 95% probability 
level for a two-tailed test and N − p degrees of freedom. (The appropriate 
t value is obtained from the TINV function in Excel.) It should be noted 
that, while the use of confi dence intervals is common, this method is 
strictly valid only for cases with one fi tting parameter. For cases where 
more than one parameter is obtained, joint confi dence regions are more 
appropriate, as this method refl ects the joint variability between the 
parameters. See Bolster et al. (2001) and Smith et al. (1998) for examples 
of how to calculate joint confi dence regions.

Parameter Correlations
The correlation between fi tted parameters is another useful metric 

for assessing the ability of a model to describe a data set. For cases where 
parameters are highly correlated, the fi tted parameter values may not 
be unique. Parameter correlations can be obtained from the correlation 
matrix, α, which is calculated from the covariance matrix by

( ) ( )1/21/2

ij
ij

ii jj

α =
Cov

Cov Cov  [12]

where the diagonal of the correlation matrix is fi lled with 1s, refl ecting 
that each parameter is perfectly correlated with itself. The off-diago-

nals refl ect the colinearity between the fi tted parameters. Values near 1 
refl ect interdependent parameter estimates, whereas low values on the 
off-diagonals refl ect independent parameter estimates.

Model Comparison
When comparing models with different numbers of fi tting 

parameters, one cannot simply choose the model with the highest 
goodness-of-fi t measure or the lowest SSE as the model that best 
describes the data. This is because models with more fi tting param-
eters will almost always result in a better overall fi t (i.e., reduced SSE 
and increased E values). Rather, one must determine if the improve-
ment in fi t is statistically signifi cant—i.e., does the improvement in 
fi t justify the additional parameters? Two statistical approaches are 
commonly used for comparing models with different numbers of 
fi tting parameters: the extra sum of squares principle and Akaike’s 
Information Criterion.

For comparing nested models—that is, models in which one is a gen-
eralization or specialization of the other—the extra sum of squares principle 
can be applied. In this approach, an F ratio is calculated from the differences 
in the SSEs between the two models (Draper and Smith, 1981):

( ) ( )
( )

1 2 2 1

2 2

SSE SSE
SSE

p p
F

N p
− −

=
−

 [13]

where the subscript 1 represents the simpler model (Model 1) and sub-
script 2 represents the model with the greater number of fi tting param-
eters (Model 2). A P value is determined from the F ratio by the FDIST 
command in Excel. If the P value is below the chosen signifi cance level, 
then the alternative model (Model 2) fi ts the data signifi cantly better than 
the null hypothesis model (Model 1).

In contrast to the extra sum of squares principle, which is based 
on hypothesis testing, Akaike’s Information Criterion (AIC) is based 
on information theory and can be used for both nested and nonnested 
models. When N is small compared with p, as is usually the case for 
sorption isotherms, the corrected AIC should be used (Burnham and 
Anderson, 2002):

( )
( )( )

SSEAIC ln

2 1 2
2 1

2

N
N

p p
p

N p

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

+ +
           + + +

− −

 [14]

The model with the lowest AIC is considered to be the most likely to be 
correct. The probability that the model with the lowest AIC score is the 
correct model can be calculated by

( )
( )

exp 0.5
1 exp 0.5

P
Δ

=
+ Δ  [15]

where Δ is the absolute difference in AIC between the two models. It 
should be noted that Eq. [14] is only valid when the number of data 
points exceeds the number of fi tting parameters by three or more, 
although it is recommended that the number of data points exceed 
the number of fi tting parameters by fi ve or more to ensure that the 
reduction in SSE required to accept the higher parameter model is rea-
sonable (Fig. 1). It should also be noted that the extra sum of squares 
principle and AIC are only valid for comparing models fi t on exactly 
the same data and using the same weighting scheme. These methods 
are not appropriate for comparing model fi ts using different weighting 
schemes or different ways of expressing the dependent variable (such 
as comparing Eq. [1] with linearized versions of Eq. [1]).
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RESULTS
Spreadsheet Validation

The layout of the spreadsheet is shown in Fig. 2. The equi-
librium (milligrams per liter) and sorbed (milligrams per kilo-
gram) concentrations are entered or pasted into Columns A and B, 
respectively. Weights for each data point are entered in Column D 
(optional). If Column D is left blank, unweighted least squares (i.e., 
wi = 1) is used. As written, the spreadsheet can accommodate up 
to 25 data points but easily can be modifi ed to include more. The 
spreadsheet uses the Solver Add-In function to perform the non-
linear regression. The maximum run time, maximum number of 
iterations, precision, tolerance percentage, convergence criteria, and 

search method can all be modifi ed by selecting the Options button 
in the Solver dialog box. The default settings have been modifi ed 
as follows: number of iterations = 1 × 104, precision = 1 × 10−6, 
tolerance = 1%, and convergence = 1 × 10−5. Parameter constraints 
can be defi ned in the Solver dialog box. The spreadsheet is written 
so that the parameters are constrained to ensure positive parameter 
values. The spreadsheet produces best-fi t parameter values, standard 
errors of the parameters, 95% confi dence intervals of the parame-
ters, model effi ciency, and the correlation matrix (Fig. 2).

Comparing the fi tted parameter values, SSE, standard 
error of the parameter estimates, and the parameter correlations 
between the spreadsheet and the SAS PROC NLIN procedure 
shows that the spreadsheet produces nearly identical results to SAS 
for all three nonlinear equations tested using both weighted (w 
= 1/S2) and unweighted (w = 1) least squares regression (Fig. 3 
and 4). This strong similarity between the two software packages 
indicates that the more accessible and easily used Excel spreadsheet 
is accurate and robust enough to obtain good parameter estimates 
with these nonlinear equations.

Equation Comparisons
To compare model fi ts between the different linearizations and 

the nonlinear equation, the best-fi t lines for each linearization were 
transformed back to sorbed concentrations, S, and the SSE and 
E values were calculated on the untransformed data. Comparing 
goodness-of-fi t measures between the different linearizations and 
the nonlinear equation shows that the nonlinear equation yielded 
the lowest SSE and highest E values for all soils (Table 2). With the 
exception of the Hartsells and Melvin soils, Linearization I yielded 
the second lowest SSE and second highest E values, followed by 
Linearizations IV, III, and II. The SSE values for the different lin-
earizations exceeded the SSE values for the nonlinear equation by 7 
to 49% for Linearization I, 52 to 309% for Linearization II, 25 to 
163% for Linearization III, and 11 to 92% for Linearization IV.

Of the four linearizations tested, Linearization I provided 
the most similar estimates of Smax and K to the nonlinear equa-
tion, followed by Linearizations IV, III, and II (Fig. 5). For all 

soils, the fi tted values for Smax 
obtained from Linearizations 
I, III, and IV were all within 
the 95% confi dence intervals 
of the fi tted values obtained 
by the nonlinear equation. 
On the other hand, only fi t-
ted values of K obtained from 
Linearization I were within 
the 95% confi dence intervals 
of the fi tted values obtained 
by the nonlinear equation for 
all eight soils tested.

For all soils tested, the 
Langmuir–Freundlich and 
the two-surface Langmuir 
models provided better fi ts 
to the data than the original 
Langmuir model, as refl ected 
by a decrease in SSE and 
an increase in E; in several 
cases, the SSE was reduced by 

Fig. 1. Relationship between number of data points and reduction 
in the sum of squared errors (SSE) required to obtain a 95% 
probability that a three- or four-parameter model is superior 
to a two-parameter model using Akaike’s Information Crite-
rion (AIC). For example, for seven data points, nearly a four 
order-of-magnitude reduction in SSE is required to obtain a 
95% probability that the fi t provided by a four-parameter 
model is superior to the fi t provided by a two-parameter 
model. On the other hand, for 10 data points, the required 
reduction in SSE is less than one order of magnitude.

Fig. 2. Example of Excel spreadsheet for fi tting nonlinear sorption equations to sorption isotherm data.
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more than an order of magnitude (Table 3). Using the extra sum 
of squares principle, both the Langmuir–Freundlich and two-sur-
face Langmuir models provided signifi cantly better fi ts (P < 0.05) 
than the original Langmuir model for six of the eight soils. There 
were not enough data points to use the AIC to perform a statisti-
cal comparison between the Langmuir–Freundlich and two-surface 
Langmuir models.

The differences in fi t obtained with the different models are 
shown in Fig. 6 for three of the soils. For the Collins soil (Fig. 6a), 
the Langmuir model underpredicted the measured sorbed con-
centrations at both low and high concentration values. The two 
modifi ed versions of the Langmuir equation, on the other hand, 
captured both low and high concentrations quite well and, based 
on the sum of squares principle, both equations provided fi ts that 
were statistically superior (P < 0.05) to the original Langmuir equa-
tion. For the Loring soil (Fig. 6b), the original Langmuir equation 
again underpredicted both low and high concentrations, whereas 
the two modifi ed equations predicted all concentrations quite well, 
with both modifi ed Langmuir models providing statistically supe-
rior fi ts to the original Langmuir model at the P = 0.05 level. For the 
Pembroke soil (Fig. 6c), although the two modifi ed Langmuir mod-

els both predicted the lowest concentration better than the original 
Langmuir model, the improvements in fi t were not considered sta-
tistically signifi cant (P > 0.05).

DISCUSSION
Of the four linearizations tested in our study, Linearization 

I—the linearized form most commonly used in P sorption 
studies—provided fi ts to the data most similar to the nonlinear 
equation. Indeed, estimates of both Smax and K obtained with 
Linearization I were within the 95% confi dence level of the 
parameter estimates obtained with the nonlinear equation for all 
eight soils tested. This is consistent with the fi ndings of others, 
who have reported obtaining similar parameter values from the 
nonlinear Langmuir equation and Linearization I (Fang et al., 
2005; Gerringa et al., 1995; Kumar and Sivanesan, 2005). Also 
consistent with other studies is our observation that Linearization 
II generally provided the poorest fi ts (i.e., highest SSE values) and 
most dissimilar parameter estimates to the nonlinear equation of 
all the linearizations (Colquhoun, 1969, 1971; Dowd and Riggs, 
1965; Harrison and Katti, 1990; Harter, 1984).

Fig. 3. Comparisons of fi tted parameter values and statistics (K 
is the Langmuir binding-strength coeffi cient, SSE is the sum 
of squared errors, Smax is the maximum sorption capacity 
of the soil, and β is the exponent in the Langmuir–Freun-
dlich model) between SAS and Excel obtained by fi tting the 
Langmuir, Langmuir–Freundlich, and two-surface Langmuir 
models to sorption data using unweighted nonlinear least 
squares regression. Parameter values and statistics all fall 
on the 1:1 line, indicating that the Excel spreadsheet yields 
nearly identical values as SAS.

Fig. 4. Comparisons of fi tted parameter values and statistics (K 
is the Langmuir binding-strength coeffi cient, SSE is the sum 
of squared errors, Smax is the maximum sorption capacity 
of the soil, and β is the exponent in the Langmuir–Freun-
dlich model) between SAS and Excel obtained by fi tting the 
Langmuir, Langmuir–Freundlich, and two-surface Langmuir 
models to sorption data using weighted (w = 1/S2, where w 
is the weighting factor and S is the measured value) nonlin-
ear least squares regression. Parameter values and statistics 
all fall on the 1:1 line, indicating that the Excel spreadsheet 
yields nearly identical values as SAS.
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While differences between linear and nonlinear forms of the 
Langmuir model have been discussed in the literature for sev-
eral decades (Colquhoun, 1969, 1971; Dowd and Riggs, 1965; 
Kinniburgh, 1986; Kumar and Sivanesan, 2005; Schulthess and 
Dey, 1996), much of this work has been conducted on simu-
lated data sets where measurement error was assigned only to the 

dependent variable and the independent variable was assumed 
to be error free (Atkins and Nimmo, 1975; Colquhoun, 1969; 
Dowd and Riggs, 1965; Harrison and Katti, 1990; Houng and 
Lee, 1998; Persoff and Thomas, 1988). In cases where the depen-
dent variable is directly measured and the independent  variable 
is directly controlled by the experimenter, such as is the case with 

the application of the Michaelis–
Menten equation to enzyme kinetics, 
the assumption of an error-free 
independent variable may be valid. 
For sorption studies, however, this is 
not the case because the dependent 
variable (sorbed concentration) is 
usually determined from the differ-
ence between initial concentrations 
(the true independent variable) and 
measurements of the so-called inde-
pendent variable (equilibrium con-
centration). Therefore, the assump-
tion of the so-called independent 
variable being error free is not repre-
sentative of actual sorption studies. 
Another limitation to these earlier 
studies is that the simulated data 
were generated using only two types 
of error structure: constant error 
variance and error variance increas-
ing linearly with the independent 
variable (i.e., constant relative error). 
Yet it is unclear whether either of 
these two error structures are repre-
sentative of actual sorption studies. 
Finally, even in studies that do com-
pare fi tted parameter values using 
measured sorption data, parameter 
uncertainties are rarely included so 
statistical comparisons cannot be 
made (Allen et al., 2004; Altin et al., 
1998; Kumar and Sivanesan, 2005; 
Kinniburgh, 1986; Schulthess and 
Dey, 1996; Tsai and Juang, 2000). 
By using actual sorption data and 
calculating parameter uncertainties 
for the fi tted parameter values, we 
have shown that Linearization I will 

Table 2. Model effi ciency (E) and sum of squared errors (SSE) for the nonlinear and linearized Langmuir equations for eight dif-
ferent soils.

Soil series
Nonlinear 
Langmuir

Linearization I Linearization II Linearization III Linearization IV

SSE E SSE E SSE E SSE E SSE E

Belknap 737 0.958 813 0.954 2749 0.844 1734 0.901 1306 0.926

Collins 750 0.954 823 0.950 3045 0.815 1975 0.880 1438 0.913

Hartsells 845 0.921 1258 0.882 1456 0.863 1198 0.887 1045 0.902

Lakin 401 0.964 431 0.961 1249 0.887 779 0.929 599 0.946

Loring 735 0.949 917 0.936 1457 0.899 1087 0.925 937 0.935

Melvin 178 0.949 218 0.937 270 0.922 223 0.936 197 0.943

Pembroke 205 0.977 220 0.976 833 0.909 484 0.947 351 0.962

Zanesville 1689 0.952 1960 0.945 6146 0.826 3746 0.894 2913 0.918

Fig. 5. Comparisons of fi tted (A) maximum sorption capacity of the soil (Smax) and (B) Langmuir 
binding-strength coeffi cient (K) values between the four linearizations of the Langmuir 
equation and the nonlinear Langmuir equation. The bars represent the 95% confi dence in-
tervals of the fi tted parameter values obtained with the nonlinear Langmuir equation.
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generally provide statistically similar parameter estimates as the 
nonlinear equation for P sorption studies.

In addition to accuracy, an important factor to consider when 
selecting an equation is whether the equation is sensitive to noni-
deality (Schulthess and Dey, 1996). That is, if the sorption data do 
not conform to the Langmuir model, then the equation should 
perform poorly so that the Langmuir model can be easily rejected. 
Erroneously good fi ts and high E values can be obtained when fi tting 
Linearization I to data not well described by the Langmuir model 
due to the fact that, in this equation, both x and y axes contain the 
variable C and therefore are not independent of each other. This 
lack of independence leads to an artifi cial trend (Dowd and Riggs, 
1965; Harter, 1984), sometimes referred to as spurious correlation 
(Kronmal, 1993), between x and y regardless of the values of S. For 
example, fi tting Linearization I to the transformed sorption data 
collected on the Hartsells soil resulted in what appeared to be a very 
good fi t to the data, with an E value of 0.994 (Fig. 7a). When using 
the best-fi t parameters from Linearization I in the nonlinear equa-
tion, however, the fi t does not appear as strong (Fig. 7b). Indeed, the 
model effi ciency decreases to 0.88 when calculated on the untrans-
formed data. When fi tting the data with the nonlinear equation, on 
the other hand, it is much clearer that the data are not fi t well by the 
Langmuir model. Therefore, the primary drawback to Linearization 
I is not the inability to provide similar parameter estimates as the 
nonlinear equation but rather the inability to provide poor model 
fi ts when the data do not conform to the Langmuir model.

Because linearized Langmuir equations are so easily used, the 
validity of the Langmuir model is rarely questioned, even though 
some of the assumptions behind the model have been shown to 
be violated in solute sorption studies (Elprince and Sposito, 1981; 
Harter and Baker, 1977, 1978). In fact, many times sorption data 
do not conform to the Langmuir model (Giles et al., 1974; Grant et 
al., 1998; Gu et al., 1994), therefore the biggest limitation to rely-
ing solely on linear regression to obtain sorption parameters is not 
the accuracy of the linearized Langmuir equations but rather the 
inability to test more sophisticated sorption models in describing 
the data. For instance, although the nonlinear Langmuir equation 
did provide better fi ts to our sorption data than did the four lin-
earized versions, these improvements were minor when compared 
with the improvements obtained with the modifi ed Langmuir 
equations. Indeed, based on the extra sum of squares principle, 
the improvement in fi t was statistically signifi cant for a majority 
of the soils tested in our study. This suggests that the Langmuir 
model was not the best model for describing these data and there-

fore fi tted parameter values obtained with this model are probably 
not representative of these soils. (This is further supported by the 
large uncertainties in the parameter estimates obtained with the 
original Langmuir model.)

Using an incorrect sorption model can have signifi cant impli-
cations on soil management decisions. For instance, the Langmuir 
model is often used to estimate the sorption maxima of a soil so that 

Table 3. Model effi ciency (E) and sum of squared errors (SSE) for the original and modifi ed Langmuir equations for eight differ-
ent soils. The probability (P) that the modifi ed Langmuir equation provided statistically superior fi ts than the original Lang-
muir equation was determined from the extra sum of squares principle (Eq. [13]).

Soil series
Langmuir Langmuir-Freundlich Two-surface Langmuir

SSE E SSE E P SSE E P

Belknap 737 0.958 17.2 0.999 0.0015 3.12 >0.999 0.00423
Collins 750 0.954 6.95 >0.999 0.00040 5.94 >0.999 0.00793

Hartsells 845 0.921 149 0.986 0.0333 13.8 0.999 0.0163

Lakin 401 0.964 15.4 0.999 0.0032 0.163 >0.999 0.00041

Loring 735 0.949 76.3 0.995 0.0147 3.08 >0.999 0.00419

Melvin 178 0.949 75.8 0.978 0.138 67.3 0.981 0.379

Pembroke 205 0.977 88.0 0.990 0.139 77.1 0.992 0.375
Zanesville 1689 0.952 86.0 0.998 0.0050 6.59 >0.999 0.00390

Fig. 6. Measured sorption data and model fi ts for (A) Collins, (B) 
Loring, and (C) Pembroke soils.
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a P soil saturation index can be calculated (Kleinman and Sharpley, 
2002). The soil saturation index is a ratio of sorbed P to P sorption 
capacity and thereby quantifi es the remaining sorption capacity of 
the soil (Breeuwsma et al., 1995). If the saturation index is high, 
then the soil is nearing saturation and presumably cannot bind 
much additional P. In contrast, a soil with a low P saturation index 
has a greater ability to bind P and therefore little P is expected to be 
released from the soil (Fang et al., 2002; Pote et al., 1999; Sharpley, 
1995). If the data do not conform to the Langmuir model, then 
fi tted Smax values are not representative of the true sorption capac-
ity of the soil and calculating P saturation indices based on these 
Smax values would be in error, thus potentially leading to ineffective 
management decisions. It is worth pointing out, however, that even 
when sorption data do appear to conform to the Langmuir model, 
fi tted Smax values do not necessarily refl ect the true sorption capacity 
of the soil (Harter, 1984; Houng and Lee, 1998).

By including the F test and AIC in the spreadsheet, we give 
users two statistical measures to help guide which equation is the 
most suitable for describing the data. A good fi t to the data, how-
ever, does not mean necessarily that the underlying assumptions 
of the model are correct or that the fi tted parameter values have 
actual physical meaning (Elprince and Sposito, 1981; Harter and 

Baker, 1977, 1978; Olsen and Watanabe, 1957; Veith and Sposito, 
1977). For instance, the assumption behind the two-surface model 
is that sorption occurs on two types of surfaces, each with differ-
ent bonding energies (Holford et al., 1974), yet Sposito (1982) 
showed that the two-surface model is capable of fi tting data under 
a much broader range of conditions. Given the numerous modifi ed 
versions of the Langmuir model that exist, as well as other more 
sophisticated sorption models not based on the Langmuir model, it 
is likely that several different models may describe the data equally 
well, so choosing the correct model will require some understand-
ing of the mechanisms involved (Grant et al., 1998; Hinz, 2001; 
Kinniburgh, 1986; Limousin et al., 2007). (Guidelines for choosing 
the correct type of sorption equation are provided by Hinz [2001]). 
Nevertheless, the ability to test more sophisticated models can help 
in elucidating the underlying mechanisms controlling sorption and 
lead to more physically realistic parameter values.

Regardless of the sorption model used, an important assump-
tion of least squares regression analysis is that the uncertainty in the 
measured values is the same for all measured values. If it is known 
that the data vary in accuracy, the data can be weighted so that the 
more accurate data exert a greater infl uence during model calibra-
tion. The use of properly weighted data has been shown, in some 
cases, to reduce the differences in fi tted parameter values between 
linear and nonlinear versions of the Langmuir equation (Allen et 
al., 2004; Barry, 1990; Dowd and Riggs, 1965; Kinniburgh, 1986; 
Mannervik et al., 1986; Persoff and Thomas, 1988; Schulthess and 
Dey, 1996). Because the use of weighted data will affect model fi ts 
and SSE values, statistical comparisons between models may yield 
different results, depending on whether the data are weighted or 
unweighted. The diffi culty with weighting data, however, is in decid-
ing on the weighting factor to be used. One method is to weight 
the data by the inverse of the measurement variance. In practice, 
though, it is unlikely that the true variance will be known due to 
inadequate replication (Bothwell and Walker, 1995). Alternatively, 
weighting factors can be based on the data themselves. For instance, 
if the relative uncertainty of the data is thought to be constant, then 
the inverse of the square of the data can be used as the weighting fac-
tor. Because weighting data with incorrect estimates of the measure-
ment uncertainty can actually result in poorer parameter estimates 
than if the data remained unweighted (Bothwell and Walker, 1995), 
weighted least squares regression should only be done if good esti-
mates of the uncertainty in the data are available.

Given the potential problems associated with lineariza-
tion of nonlinear equations and the availability of nonlinear 
regression tools, it has been recommended for some time that 
linear solutions to the Langmuir model be discarded in favor 
of fi tting the nonlinear Langmuir equation to untransformed 
data (Harrison and Katti, 1990; Kinniburgh, 1986; Persoff and 
Thomas, 1988). Our fi ndings show that the largest drawback to 
using linearized Langmuir equations is not necessarily the statis-
tical defi ciencies of these linearizations, but rather the inability 
to test more sophisticated models that may be more appropriate 
for describing the data. Even though numerous statistical pack-
ages exist that are capable of performing nonlinear regression, 
the continued use of linearized Langmuir equations (Borling et 
al., 2001; D’Angelo et al., 2003; Fang et al., 2002; Kleinman 
and Sharpley, 2002; Siddique and Robinson, 2003; Xu et al., 
2006) suggests that access to nonlinear regression tools may still 
be limited. Therefore, by developing an accurate and easy-to-

Fig. 7. Model fi ts to sorption data measured for the Hartsells soil 
obtained with (A) Linearization I (Table 1) and (B) the nonlin-
ear equation. Also shown in (B) is the model fi t obtained with 
Linearization I but transformed to sorbed concentration.
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use spreadsheet capable of fi tting nonlinear Langmuir equations 
to sorption data, our study should encourage a more critical 
approach to fi tting isotherm data as well as offer the fl exibility of 
testing more sophisticated models. Even though the spreadsheet 
currently includes only two modifi ed versions of the Langmuir 
model it can easily be modifi ed to include any two-, three- or 
four-parameter model. (The corresponding author may be con-
tacted if assistance is needed.) The results of this study should 
allow researchers to make more informed decisions when apply-
ing the Langmuir model to their sorption data.
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